Ketamine, but not phencyclidine, selectively modulates cerebellar GABA(A) receptors containing alpha6 and delta subunits.

نویسندگان

  • Wulf Hevers
  • Stephen H Hadley
  • Hartmut Lüddens
  • Jahanshah Amin
چکیده

Phencyclidine (PCP) and ketamine are dissociative anesthetics capable of inducing analgesia, psychomimetic behavior, and a catatonic state of unconsciousness. Despite broad similarities, there are notable differences between the clinical actions of ketamine and PCP. Ketamine has a lower incidence of adverse effects and generally produces greater CNS depression than PCP. Both noncompetitively inhibit NMDA receptors, yet there is little evidence that these drugs affect GABA(A) receptors, the primary target of most anesthetics. alpha6beta2/3delta receptors are subtypes of the GABA(A) receptor family and are abundantly expressed in granular neurons within the adult cerebellum. Here, using an oocyte expression system, we show that at anesthetically relevant concentrations, ketamine, but not PCP, modulates alpha6beta2delta and alpha6beta3delta receptors. Additionally, at higher concentrations, ketamine directly activates these GABA(A) receptors. Comparatively, dizocilpine (MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate]), a potent noncompetitive antagonist of NMDA receptors that is structurally unrelated to PCP, did not produce any effect on alpha6beta2delta receptors. Of the recombinant GABA(A) receptor subtypes examined (alpha1beta2, alpha1beta2gamma2, alpha1beta2delta, alpha4beta2gamma2, alpha4beta2delta, alpha6beta2gamma2, alpha6beta2delta, and alpha6beta3delta), the actions of ketamine were unique to alpha6beta2delta and alpha6beta3delta receptors. In dissociated granule neurons and cerebellar slice recordings, ketamine potentiated the GABAergic conductance arising from alpha6-containing GABA(A) receptors, whereas PCP showed no effect. Furthermore, ketamine potentiation was absent in cerebellar granule neurons from transgenic functionally null alpha6(-/-) and delta(-/-)mice. These findings suggest that the higher CNS depressant level achieved by ketamine may be the result of its selective actions on alpha6beta2/3delta receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The "reckless" Humphry Davy of J. A. Paris.

phencyclidine, selectively modulates cerebellar GABA(A) receptors containing alpha6 and delta subunits. J Neurosci 2008; 28:5383–93 30. Irifune M, Sato T, Kamata Y, Nishikawa T, Dohi T, Kawahara M: Evidence for GABA(A) receptor agonistic properties of ketamine: Convulsive and anesthetic behavioral models in mice. Anesth Analg 2000; 91:230 – 6 31. Coates KM, Flood P: Ketamine and its preservativ...

متن کامل

GABAA alpha6-containing receptors are selectively compromised in cerebellar granule cells of the ataxic mouse, stargazer.

Stargazer mice fail to express the gamma2 isoform of transmembrane alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate (AMPA) receptor regulatory proteins that has been shown to be absolutely required for the trafficking and synaptic targeting of excitatory AMPA receptors in adult murine cerebellar granule cells. Here we show that 30 +/- 6% fewer inhibitory gamma-aminobutyric acid, type A (GA...

متن کامل

Cerebellar gamma-aminobutyric acid type A receptors: pharmacological subtypes revealed by mutant mouse lines.

The vast molecular heterogeneity of brain gamma-aminobutyric acid type A (GABAA) receptors forms the basis for receptor subtyping. Using autoradiographic techniques, we established the characteristics of cerebellar granule cell GABAA receptors by comparing wild-type mice with those with a targeted disruption of the alpha6 subunit gene. Cerebellar granule cells of alpha6(-/-) animals have severe...

متن کامل

Alterations in the expression of GABAA receptor subunits in cerebellar granule cells after the disruption of the alpha6 subunit gene.

Any given subunit of the heteromultimeric type-A gamma-aminobutyric acid (GABA) GABAA receptor may be present in several receptor subtypes expressed by individual neurons. Changes in the expression of a subunit may result in differential changes in the expression of other subunits depending on the subunit composition of the receptor subtype, leading to alterations in neuronal responsiveness to ...

متن کامل

A-kinase anchoring protein 79/150 facilitates the phosphorylation of GABA(A) receptors by cAMP-dependent protein kinase via selective interaction with receptor beta subunits.

GABA(A) receptors, the key mediators of fast synaptic inhibition in the brain, are predominantly constructed from alpha(1-6), beta(1-3), gamma(1-3), and delta subunit classes. Phosphorylation by cAMP-dependent protein kinase (PKA) differentially regulates receptor function dependent upon beta subunit identity, but how this kinase is selectively targeted to GABA(A) receptor subtypes remains unre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 20  شماره 

صفحات  -

تاریخ انتشار 2008